Content Based Image Retrieval Based on Modelling Human Visual Attention
نویسندگان
چکیده
In this paper we propose to employ human visual attention models for content based image retrieval. This approach is called query by saliency content retrieval (QSCR) and considers visual saliency at both local and global image levels. Each image, from a given database, is segmented and specific features are evaluated locally for each of its regions. The global saliency is evaluated based on edge distribution and orientation. During the retrieval stage, the most similar images are retrieved by using an optimization approach such as the Earth Moving Distance (EMD) algorithm. The proposed method ranks the similarity between the query image and a set of given images based on their similarity in the features associated with the salient regions.
منابع مشابه
Image retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملImage retrieval using visual attention
Author: Liam M. Mayron Title: Image retrieval using visual attention Institution: Florida Atlantic University Dissertation Advisor: Dr. Oge Marques Degree: Doctor of Philosophy Year: 2008 The retrieval of digital images is hindered by the semantic gap. The semantic gap is the disparity between a user’s high-level interpretation of an image and the information that can be extracted from an image...
متن کامل